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ABSTRACT

Formulas are derived for the initial bias, variance, and spectrum of the

sample mean in finite state Markov processes. The focus is on application of

such expressions to the steady-state simulation problem. 4
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SIGNIFICANCE AND EXPLANATION

Various techniques have been proposed for determination of confidence

intervals associated with steady-state quantities in simulation. Evaluation

of such procedures requires comparison of their performance on stochastic

system with known characteristics. In this paper, w therefore derive

computable formulas for several quantities associated with-finite state Markov

* chains, and discuss their relevance to the steady-state simulation problem.

The responsibility for the wording and views expressed in this descriptive
sumary lies with MRC, and not with the author of this report.
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SONS ASYMPTOTIC FORMULAS FOR MARCOV CHAINS

WITH APPLICATIONS TO SIMULATION

.I Peter W. Glynn

1. INTRODUCTION

j Consider the simulation of a stochastic process {X t  t > 0) for which

X t -> X

(=-- denotes weak convergence). In many simulation applications, it is of interest to

determine confidence intervals for r(f) 1 S(X), where f is some real-valued functional

g defined on the state space of Xt . This problem is known, in the simulation literature, as

the steady-state simulation problem, and a great deal of effort has been devoted toward its

solution see Chapter 5 of Fishman (1978) or Section 8.6 of Law and Kelton (1982) for a

complete discussion of the problem.

The evaluation of simulation methodology for the steady-state simulation problem

requires that one possess a class of models for which parameters of interest may be

calculated analytically. Behavior of the procedures on the models then provides a

Obenchmark" from which to judge their overall performance. Our goal, in this paper, is to

establish a variety of formulas for finite state Markov chains (in both discrete and

continuous time) and to discuss the importance of these formulas in the context of

methodology evaluation.

One of the earliest technIqus proposed for dealing with steady-state simulation

problems is the technique of replication. The simulator chooses t large, and simulates

the process up to time t, creating a sample path (X 1 0 4 a 4 t. The simulator

repeats this step m times, creating a collection {X 2 0 4 s < t, 1 0 i m, of m
a

independent replicates of the process. The parameter r(f) is then estimated by

r mf ' Ft i
rt(m~f) I f f(X )ds

t at i,1 0
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Note that the independence of the replicate* yields a central limit theorem, and a
%I

consequent asymptotically valid confidence interval. In any case, the mean square error of

the estimate rt(m.f) Is given by

(1.2) lr (m,f) - r(f)) - o2(r (1,f))/m + b f)
t t t

where

bt(f) - Zrt(14) - r(f)

It is clear that for large m, the bias term bt(f) is the primary contributor to the

mean square error. As a result, the initial bias term bt(f) has attracted a great deal

of attention in the simulation literature, for a survey, see Wilson and Pritaker (1978).

Section 2 is therefore devoted to formulas for bt(f), and to a qualitative discussion of

Initial bias.

'" Nore recently, a variety of single replicate procedures have been proposed. They rely

on the fact that for many processes Xt  satisfying (1.1), there exists a constant s(f),

depending on the process Xt• such that

01.3) /(If(X )ds/t -r(f))/s(f) -> (0,1)
0

-" ""where N(0,1) is a unit normal random variable (result (1.3) holds, in particular, for

finite stats Markov chains). Confidence Intervals based on (1.3) require consistent

estimators for the constant a Mf. In Section 3, formulas are derived for the constant

2 (f), thereby allowing the study and comparison of different estimators for s2 (f).

4:- These formulas extend the work of Rasen and Pritaker (1980) on continuous time Narkov

chains with diagonalisable generators to the general case. Section 4 is devoted to

solution of several related conjectures of Hazen and Pritaker.

One well-studied class of estimators for s2 (f) in based on spectral techniques. If

(X f ) is a second order stationary process, it can be shown, under certain regularity

* . 2conditions, that s(f) 21c(0), where c(A) is the spectrum of (Xt } given by
t

cMA) - j eit cov(f(X ).f(X ))dt, 21.4) t

* ** -2-
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Several recent papers (see Hei4elberger and Welch (1961a), (1981b). for example) have

proposed techniques based on estimating *2 (f) via polynomial fitting to an estimated

spectrum in a neighborhood of zero. Section S therefore derives formulas for the spectrum

corresponding to finite state Warkov chains.

Before concluding this section, it should be noted that the above discussion for

continuous time processes carries over, in an obvious way, to discrete time processes -

this justifies the interest in formulas for discrete time Harkov chains.

-- o
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2. POWULAI POR IS INITIAL BIAS

Let (X a : n 1 0) be an Irreducible Narkov chain of period d, with transition

matrix P, on state apace Z (1,2....,M). Such a chain necessarily has a unique

stationary distribution w ( T solving wP w. Given a row vector

V -fl)..fm) (fV denotes the transpose of f), it is veil known that

with probability 1, for any initial distribution pi Isu1 .. 1 3  (Pa1  1(10 1)i). Let

n-

here U 9 stands for expectation under Initial distribution ua. our objective is to

obtain formulas for the initial bias b. (IA~f).

We will need the following standard results fro larkov chain theory (see Kemeny and

Snell (1960), p. 70, 71, 100)t

(2.1) p *d % as n * ,where 11 is a stochastic matrix
0

4d-1(2.2) (UX+ P +... + )/d, whore AI has all rows equal to w

(2.3) gp p _ 12 _

(2.) the inverse matrix F (I1 - Q) exists, where Q -P - I

The matrix F is called the fundamental matrix of the Harkov chain. it is worth noting
Aa k

that when P is aperiodic, the matrix T has the representation V .(P - )*Since
ka0

the natural analog of Ai for transient chains is the zero matrix, it follows that the

fundamental matrix is a generalized form of the potential matrix (see Cinlar (1975), p.

196-7).

(2.4) Theorem. The initial bias bn (1A,f) is given by

(2.6) b n(y,f) - i(I - P )Ff/n

Furthermore, if ninkd+ i, where 0 4id< , then

(2o7) b Off WI - 1P %1)Vf/n + 0(p"

where 0 p < I (a sequence b. is O(an) if there exists K A 0 such that

lbm I MKla I).

-4-



Proof. The bias can be written in the form

1 k 1 
nn-k

b (pfuiP nf(j) - T f(j) n- (P)k f
_ k-O ij ij k-0

Now, it is easily verified, using (2.3), that

(2.8) n k - fl)( - I -Pn

from which (2.6) follows immediately, after postmaultiplying through (2.8) by F. Equation

(2.7) is a direct consequence of the geometric convergence of Pnd to 10  (see Corollary

4.1.5 of Kemeny and Snell (1960)). II

This result generalizes Theorem 7-15 of Heyman and Sobel (1982) (their proof requires

that P be aperiodic). We now illustrate the application of the theorem to a two state

Markov chain. Let

.. p. (I -a a )

Sb I -b)

where a,b ) 0 and 0 < a + b < 2. Then (xn} is aperiodic and
n

W - (b a)

with

I (b : + 1a -a)

S(a + bl
2  

_

Pence

bn (a,f)  2 1 (ap 1 - bi 2 )(f(l) - f(2)) + 0(pn)• ' (a + b)2n

A similar bias formula can be obtained for continuous time Markov chains. Let

(x :t > 0} be an irreducible Markov jusp process on state space z - {1,2,...,m}, with

generator Q (recall that Q generates Xt  in the sense that P(t) - exp(Qt), where

Pt,(t) . P(Xt - JIX 0 n i) and unique stationary distribution w solving wQ - 0.

Retaining the notational conventions previously stated, set

¢ t
bt,,f, N E (I f f(X )ds) -if

t t 0

-5-



The following results are well known:

(2.9) P(t) * 11, where I has all rows identical to

2
(2.10) P(t)N - IP(t) = 1 11 .

We will also need the following lema.

(2.11) Lemm. The inverse matrix F = (N - Q) exists.

Proof. using (2.10) and the fact that 11 - 0 - QN, observe that

t t
(2.12) (11 - g)(f (P(s) - )ds + n)-- f Q exp(Qs)ds + = I - exp(Qt) + R

0 0

Then, letting 1A1 - max{ I lAijl. we have

f IP(s) - 111d = f I(P(n) - )P(s)lds 4 IP(n) - i1
0 nO 0 n=0

which is finite, since P(1) is an aperiodic irreducible matrix and therefore P(n)

converges to 11 geometrically fast. Hence, letting t * * in (2.12), we see that A - Q

has an inverse. IJ

Initial bias for continuous time Narkov chains is determined by the following theorem.

(2.13) Theorem. The bias bt(u,f) is given by

b (Pf) - l(I - P(t))Ff/t = M(I - R)Ff/t + 0(e )
t

where a is some positive constant.

The proof of this theorem is similar to that given in the discrete time case. It

should be pointed out that Theorem 2.13 generalizes a result of Grasman (1982) given for

f(k) - k.

These initial bias formulas have several interesting properties. First of all, we

observe that there exists a constant c(p,f) such that

t (b (I,f) - c(p,f)/t) + 0t
- -for all k A 0. Hence, in any bias expansion of the form

r + t--
b t(P,f) I c + Ot o ' ) ,

' i -6-



it mist be that c (pf) - 0 for A A 2. Secondly, for any 0 and f, there exists t

* such that for a ) t, either,

1) b (of) decrease@ monotonically to "ro. or
a

* - i1) b (Pt) Increases monotonically to ero.

Rence, for a sufficiently large, the bias has a constant sign. Several proposed initial

bias procedures require this sign consistency property (em, for example, Schruben (1982),

p. 577). Of course, the above discussion Is equally valid for discrete time chains

(provided one accounts for periodicity).

-7
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3.* VARIANCZ FORUILAS FOR TUB SANPLZ MEAN

A natural way to try to evaluate s(f) is to take the variance of both sides of

(1.3). yielding the formal relation

(3.1) t 2( f(X )ds/t) a 2(fM
0

For finite state Markov chains, relation (3.1) can be justifiled rigorously, in the sense

that It is correct that

*(3.2) t a,( qf f(X )do f i) 2  6 2(f)I
0

a similar result holds in discrete time. For continuous time Narkov chains, (3.2) can be

*proved by using the fact that {x t t )- 0) is #-mixing and then applying Theorem 20.1 of

* Billingsley (1966). The discrete time version of (3.2) follows from Theorem 3 of Chung

* (M96). p. 102. The following theorem therefore provides a formula for evaluation of

82 M.)

(3.3) Theorem. Let (X n sn ), 0) and {X~ ast ;P 0) satisfy the same assumptions as in

Section 2. Then,

(3.4) n Z( I n--W) f-T(I - fl)f + 2f'TP(F - II)f +.! f-T(Pn+ -P)V f

4t 4

(3.5) t 3,( M fX)ds -If) 2f'T(F - ~ + 2 - 1P~) 2

where T Is a diagonal matrix with T - .
ii

Proof. The process (X in stationary under P (., so

(3.6) n 9 1 ~ If 2 -var M(XI) (n k)cov(M KO ).f(X k)
Q;k 0 f(k (n n--

Now,



(3.7) cov (f(X 0,f(X)) , wf(i)P f(j) - j wIf(i)f(j) - f'T(P - II)f
U Ok j iij

and

(3.8) n (n - k)(P - )(l - Q) - n (n - k)(P - Pk+1

k-l k-i

)i;n n
-r- [pk,,(np - ). - pk n+xZ-n •

k-i k-o

Applying (2.8) to the sum in (3.8), and postmultiplying through (3.8) by F yields

.(3.9) (n - k)(P
k - 

1)- n(P- )-I p"+l)i 2 + (I

k-i

since H(H - Q) - R, it follows that R - HF. Also, Q - (H - 1)(9 - Q) so that
-2

QF - U - I and thus QF (H I)F. These observations, together with (3.6), (3.7), and

(3.9), lead directly to (3.4). The proof of (3.5) is similar. i

The right hand side of (3.5) can be algebraically rearranged, by using the identity

F - H - H - (H + Q)- , to obtain Theorem I of Hazen and Pritsker (1980). Their

derivation required, however, that Q be diagonalizable. The formula also extends

equation (16) of Grassman (1982) to general f. Formula (3.4) is an exact form of an

asymptotic result found on page 84 of Kemeny and Snell (1960).

We now apply Theorem 3.3 to determine s
2
(f) for the two state Markov chain studied

in Section 2. Routine calculations show that

a2(f) - f'T(I - ii)f + 2f'TP(F- )f 3 (f(I) - f(2))

(a + b)3

We can, in fact, extend Theorem 3.3 to cover arbitrary initial distributions.

(3.10) Theorem. Let (X : n ) 01 and (Xt : t ; 01 satisfy the same assumptions as in

Section 2. Then,

-9-
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n% n-I f) ()+01
n~ 3(1. f(Xk) - =s()*o-

E(~ f(X )ds - f 2 .= ( + 0(~

Proof. We prove only the case where (In) to aperiodic, the periodic and continuous time

* proofs require only simple modification. Let g~)=f(j) - if and observe that

(311 I~( -1 2 - "I

-7 n-13 (x 3 (x n-2 n-I

k-0 k-0 1-kit£

now, P" n H geometrically fast (see Corollary 4.1.5 of Xemeny and Snell (1960)) so there

exist constants a >0 and 0 Cp( 1 such that Ik I I kCu hs for I >k,

Iz Ag(x )g(Kz) k !g( )(X )I-I g(j)(Pi -j )1 (P r V r)g(r)j
i~j r

i,j,r

where IgI max NM~iI. This inequality, together with Theorem 2.5, allows one to bound

(3.11) by

lb (I! )I 2m +- nil a2 £ 0(1/n)
k-O 1-k4I

Application of (3.4) completes the proof. I

Theorem 3.10 allows us to obtain an asymptotic formula for the mean square error of

the estimator rt(m~f) used in the method of replication. By (1.2), and Theorem 2.5.

* 3.3, and 3.10,

-10-



,(r (*,) wf)2  5 (r(.) )2 -t(19))2 2rb2(,q)

2 2,3 -) ,,(r1 ae - (3 (%C - ))' - 0~~1 g1,'btug

V Y - -If (IA(I - I)vf) + 0O-L)
t 2 t2

an analogous expanslon holds in the discrete tim setting.

--1

Io,

b'2
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4. SOLION TO COW CTUR S OF HAZZN AND PRZTSK R

In their study of continuous time Markov chains, Hazen and Pritaker considered the

dependence of s(f) on scaling of the generator Q. riting s(Q,f) to indicate the

dependence of s(f) on g, they showed that if a ) 0, then a2oQaf) = 
2 (Qf)/ for

finite state processes and conjectured that the same result holds for countable state

processes, as well. The following theorem answers their conjecture (see Feller (1971), p.

326-32 for definitions and results on Narkov jump processes).

(4.1) Theorem. Let Q be an irreducible conservative (i.e. QiJ ) 0 for i *

- i Qij) generator. If the minimal process (X ) corresponding to Q

satisfies

t
p {CoI(f(x =) - r(f))ds) 4 xv" s(Q.f)} P(N(O,1) 4 x)

0

as t * . then the minimal process {X I corresponding to 0Q, for a > 0, satisfies
t

t
Pi ,tf (f(X.) r(f))ds) 4 xft .eOf)l + P(N(O,1) < X)

0

and a +f) - a2(Qf)/*.

Proof. since (I t  is the minimal process corresponding to Q, it follows that it may be

constructed via a discrete time NMarkov chain (Y k that determines the sequence of states

visited by Xt, with the holding time In the kth state visited given by an exponential

random variable with parameter q(Yk)(q(i) - -Qii). On the other hand, the minimal process

it associated with o has the same embedded discrete time chain (Y k, but with

holding times determined by exponential random variables with parameters aq(Yk). Hence,

one can represent Xt via Xt " Ce, so that

at
(f (f(X) " r(f))ds)/t a2 a 1 " 2  (f ; - r(f))ds)/t1 /2 a/2
0 0 /

a12(f a /

a (fox) - r(f))ds)/t1/2
._. 0

from which the theorem follows. II

-12-

.........



An application of the result shows that the variance constant s2 (Q,f) for the queue-

length process associated with an M/M/1/ queue with arrival rate ak and service rate

ap is proportional to 1/a (see p. 31 of Hazen and Pritsker (1980)).

Before proceeding to the second conjecture of Hazen and Pritsker, it is convenient to

discuss a second group of formulas for s2 (f), based on the regenerative structure of

finite state !arkov chains. The regenerative property dictates that blocking the sample

path of the process according to consecutive entrance times T into some fixed state,

say i, yields a sequence of independent and identically distributed random variables. It

is to be expected, then, that the variance constant s2(f) can be evaluated in terms of

quantities expressed over a single regenerative block. In fact, it can be shown that (see

Smith (1955), Theorem 9)

(4.2) a2 (f) Et(f (f(X) - wf)ds) 2/ i 1
0

where E denotes the expectation conditional on X- I (a similar formula holds in

discrete time; see Chung (1966), p. 99). Mordijk, Iglehart, and Schassberger (1976) derive

matrix-theoretic expressions for the numerator and denominator of (4.2). From a historical

viewpoint, it is interesting to note that there is a third group of formulas for s2(f),

based on the eigenstructure of the transition matrices# see omanovsky (1970), p. 241.

Returning now to the second conjecture, consider a capacity one single server queue

with Poisson arrivals and Erlang-p service times, with inter-arrival and service time means

given by 1/X and p/li respectively. If one is interested in the variance constant

associated with the number of customers in queue, then the method of stages shows that the

constant may be evaluated by considering s2 (f) for the continuous time Narkov chain

described by the (p + 1) by (p + 1) generator-A 0 0 ..
-0 0 ... 0

• 1. 0 3 . --

* -13-
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where ( - (0,1,1,...,1) (i.e. f is one so long as the customer is in service). Writing

a 2 (povf) to denote the dependence of s2 (f) on p and P, the conjecture of Hazen and

Pritzker was that for V > 0,

143) *2(ppp, f) - p+1 22(1,of)
2p

Relation (4.3) can be most easily proved by using (4.2). Let 20 .Z1 .... Zp be independent

exponential random variables with E 0 - 1/A and 3ZZ - /po for i 1. Then,

(4.4) iT1 - lZ + ... + Z ) - 1/ / 1

'T I

4.(f M If)ds)
2 _. Ci(iSZ + IZL0 - Tf)

2

21 21 1 p + 11

l(f) 1- if) 2  2 1 2
p (+7a)2

since wf - A/CA + j). substituting (4.4) and (4.5) into (4.2), one gets

a, p'Mf -( 1 +0 )3
(A +

verifying (4.3). Incidentally, it is easily shown, using (4.2), that a2 (ppp,f) tends to

the variance constant associated with the constant service time version of the model as

p . as would be expected.

ie -14-
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5. 707N631AS FOR ?UU SDBCTRAL DMfUIT!

The spectral density of a discrete time PArkov chain is defined by

c-O .(JL) 0 1 jvk
for continuous time Harkow chains, c(A) Is given by

The spectral density of finite state Narkov chains may be computed via the following

theorem.

(5.1) Theorem. Let (2 ) and (X ) satisfy the sama assumptions as in Section 2. Then,n t

the inverse matrices rCI) - (I - ( * A - 1)1) " 1 and V(l) - (H - Q + iXI) - 1 exist for

all A. and the spectral densities c(A) and c(%) are given by

(5.2) 2wcCA) f-'T(Z - K)f + f-TP( (-X) + 7(A) - IL + e

(5.3) 2Wc(A) - f'T(F(-A) + F(M) - 21(1 + I M

Proof. We gve the proof In the discrete time aperiodic case, the proofs in the other

cases being similar. Using (3.7), one gets

(5.4) 2mc(A) - fT(Z - R)f + i (.- + . )fT(P 11)f
k-1

Now, observe that

.

(5.5) a k(k  - )IT - p + enI ) -p - fl - ein(p + 1 - 1)

a. k-I

Also, it is evident that

I (eR)4k(ulk - ,) < -
k-1 k

since Pk I geometrically fast, and thus the sm in (S.S) converges to aome limit, say

D(A). Taking limits in (5.5) yields

i';" D(M)(M P + e' I)) - P

-I-

-. . . . . . . . .



so

. (D(M) + 1)(11 - P + e Ir - 1

and thus i(-A) = (H - Q + ( -  
- 1)1)-  exists. Postmultiplying through (5.5) by

i,-A) and letting n proves that

15(.6) a Il)'lk (P k l (p -I)(A

it in easily verified that Hi(A) - e 1! and combination of (5.4) and (5.6) leads easily

to (5.2). II
'

Formulas (S.2) and (5.3), together with Theorem 3.3, prove that 2wc(O) - a 2(f) (see

(1.4)), justifying the use of spectral methods for finite state Markov chains. Returning

to the two state Markov chain introduced earlier, the computation of c(.) is

straightforward, given that

+ x 12X (Aa X

(e (b + a - 1) + 2)(a + b) -b e (a + b) - a

The formulas also yield some interesting qualitative information about the spectrum of

finite state Harkov chains. Applying Cramer's rule to compute the inverse matrix (.X)

shows that the elements of ;(A) are always rational polynomials in the indeterminate

a - in fact, the polynomials describing the nmerator and denominator must be of degree

'* less than or equal to m. Consequently, the spectrum of a stationary discrete time finite

* state Narkov chain corresponds to that of a finite order autoregressive moving average

process.

-16-
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